BRIGHT CULTURE Specialist in Secondary Science and Maths for 2000+				
Name:	Target Grade:	Actual Grade:		
READ THESE INSTRUCTION	IS FIRST			
INSTRUCTIONS TO CANDID	ATES			
1. Find a quiet, comfortable spot free place from distractions.				
2. Spend one minute on eacl	h mark.			
3. Time yourself for every sin	ngle question.			
4. Every chapter has their own question types. Ensure that you know the different question type for each chapter.				
5. Make a conscientious effore techniques. E.g Take a picture revise it over and over again	ort to remember your mistak re for the mistakes that you	es, especially in terms of answering made, keep it in a photo album, and		
6. Highlight question types t exams.	hat you tend to keep making	g mistakes and review them nearing		
7. Always review the common questions and question type that you tend to make mistakes nearing exams.				
8. During exams, classify the question type and recall what you have learnt, how you need to analyse the questions for the different question type, what you need to take note of and answer with the correct answering techniques!				
✤ Wishing you all the best	for this test!			
You've got this!				
♀ With lots of love.				
Bright Culture 🧡				
		MARKS		
If you are struggling in this r	paper, means you need to w	ork harder!		
If you need any professional on how to advance, feel free <u>www.bright-culture.com/.</u> We future to reach your goals.	guidance and further advic to WhatsApp us at 9187082 are committed to connect	e 0 or find us at you to your		

CHAPTER 9: DIFFERENTIATION

1 The equation of a curve is $y = \ln\left(\frac{x-3}{x+6}\right)$ for x > 3. Determine whether y is an increasing or decreasing function. [5]

2 The function f(x) is defined by $f(x) = \frac{5x+2}{2x-3}$ for all values of $x, x \neq \frac{3}{2}$ Determine, with working, whether f(x) is an increasing function or a decreasing function. [3]

3 The function f is defined by $f(x) = xe^{\frac{x}{5}} + ke^{\frac{3}{5}x}$, where k is a constant. Given that f'(0) = 5, find the value of k.

[4]

4 (a) It is given that
$$f(x) = \ln \sqrt[3]{\frac{5+x}{5-x}}$$
.

(i) Find f'(x) and f''(x).

[4]

(ii) Hence determine the range of values of *x* for which both f '(*x*) and f ''(*x*) are positive. [4]

(b) Show that
$$\frac{d}{dx}\left[4\sin^2\left(\frac{x}{2}+\pi\right)\right] = k\sin x$$
 where k is a constant. [3]

5 Given that $y = \operatorname{cosec} x \tan x$,

(i) show that
$$\frac{dy}{dx} = \sin x \sec^2 x$$
, and [2]

(ii) determine where y is decreasing for $0 \le x \le 2\nu$. [2]

ANSWERS

1

$$y = \ln\left(\frac{x-3}{x+6}\right)$$
$$= \ln(x-3) - \ln(x+6)$$

(Simplifying using the laws of logarithms will reduce the complexity of the technique of differentiation.)

$$\frac{dy}{dx} = \frac{1}{x-3} - \frac{1}{x+6}$$
$$= \frac{x+6-(x-3)}{(x-3)(x+6)}$$
$$= \frac{9}{(x-3)(x+6)}$$

[Note: $\frac{\mathrm{d}}{\mathrm{d}x}(\ln u) = \frac{u'}{u}$]

Alternative Method

$$\frac{dy}{dx} = \frac{\frac{(x+6)(1) - (x-3)(1)}{(x+6)^2}}{\frac{(x-3)}{x+6}}$$

This is NOT
recommended!
$$= \frac{x+6-x+3}{(x+6)^2} \times \frac{x+6}{x-3}$$
$$= \frac{9}{(x-3)(x+6)}$$

For x > 3, 9 is a positive constant, x - 3 and x + 6 are both positive.

Since $\frac{dy}{dx} > 0$. Hence y is an increasing function.

2
$$f'(x) = \frac{-19}{(2x-3)^2}$$
 Decreasing Function

$$3 \qquad k = \frac{20}{3}$$

The equation of a curve is $y = \ln\left(\frac{x-3}{x+6}\right)$ for x > 3 Determine whether y is an increasing or decreasing function. [5]

-

4(a)(i)	$f(x) = \ln\left(\frac{5+x}{5-x}\right)^{\frac{1}{3}}$	
	$=\frac{1}{3}\ln\left(\frac{5+x}{5-x}\right)$	
	$=\frac{1}{3}\left[\ln(5+x)-\ln(5-x)\right]$	M1
	$f'(x) = \frac{1}{2} \left(\frac{1}{5+x} + \frac{1}{5-x} \right)$	M1
	$-\frac{1}{3}\left[\frac{5-x+5+x}{(5+x)(5-x)}\right]$	
	$-\frac{10}{3(5+x)(5-x)}$	A1
	$=\frac{10}{3(25-x^2)}$	
	$(1)(25 - x^2)^2(-2x)$	
	$= \frac{20x}{1 + 10^{-2}}$	
	$3\left(25-x^2\right)^2$	A1
4(a)(ii)	For $f'(x) > 0$ 25 - $x^2 > 0$	M1
	$(5+x)(5-x) \ge 0$ -5 < x < 5	A1
	For $f''(x) > 0$ 20x > 0	
	x > 0	A1
	For both f'(x) and f''(x) to be positive, $0 \le x \le 5$	A1
4(b)	$\frac{d}{dx}\left[4\sin^2\left(\frac{x}{2}+\pi\right)\right]$	
	$= 4 \times 2\sin\left(\frac{x}{2} + \pi\right)\cos\left(\frac{x}{2} + \pi\right) \times \frac{1}{2}$	M1
	$=4\sin\left(\frac{x}{2}+\pi\right)\cos\left(\frac{x}{2}+\pi\right)$	
	$= 2\sin 2\left(\frac{x}{2} + \pi\right)$	M1
	$= 2\sin(x + 2\pi) \text{or} 2(\sin x \cos 2\pi + \cos x \sin 2\pi)$ $= 2\sin x$	
		A1

5	Given that $y = \csc x \tan x$.	
	(i) show that $\frac{dy}{dx} = \sin x \sec^2 x$	[2]
	$\frac{dx}{dx} = \frac{dx}{dx}$	[2]
	(ii) determine where y is decreasing for $0 \le x \le 2\pi$.	[2]
(i)	$y = \operatorname{cosec} x \tan x$	
	$1 \sin x$	
	$=\frac{1}{\sin x} \times \frac{1}{\cos x}$	
	cosx	
	$=(\cos x)^{-1}$	M1
	$\frac{dy}{dx} = (-1)(\cos x)^{-2}(-\sin x)$	
	$=\frac{1}{1}(\sin r)$	M1 – chain rule and
	$\cos^2 x$	differentiation of
	$=\sec^2 x \sin x$	functions
	Or	
	$y = \operatorname{cosec} x \tan x$	
	$=\frac{1}{\sin x} \times \tan x$	
	$=(\sin x)^{-1}\tan x$	
	$\frac{dy}{dx} = \frac{1}{\sin x} \cdot \sec^2 x + \tan x \left(-\sin^{-2} x \cos x \right)$	
	$=\frac{1}{\sin x} \cdot \sec^2 x - \frac{\sin x}{\cos x} \left(\frac{\cos x}{\sin^2 x} \right)$	M1
	$=\frac{1}{\sin x} \cdot \sec^2 x - \frac{1}{\sin x}$	
	$\frac{dy}{dx} = \frac{\sec^2 x - 1}{2}$	
	dx sin x	
	$=\frac{\tan^2 x}{1-\tan^2 x}$	
	$\sin x$	
	$=\frac{1}{\sin x}\left(\frac{\sin^2 x}{\cos^2 x}\right)$	M1
	$=\frac{1}{\cos^2 x}(\sin x)$	
	$=\sin x \sec^2 x$	

	$y = \cos e c x \tan x$	
	$=\frac{\tan x}{2}$	
	sin x	
	$\frac{dy}{dx} = \frac{\sin x \sec^2 x - \tan x \cos x}{\sin x + \tan x \cos x}$	
	$dx = \sin^2 x$	
	$\sin x \sec^2 x - \sin x$	
	$=\frac{1}{\sin^2 x}$	
	$\sin x \left(\sec^2 x - 1 \right)$	
	$=\frac{1}{\sin^2 x}$	
	$\sin x \left(\tan^2 x \right)$	
	$=\frac{1}{\sin^2 x}$	M1
	$1 \left(\sin^2 x \right)$	
	$=\frac{1}{\sin x}\left(\frac{\cos^2 x}{\cos^2 x}\right)$	
	$=\frac{1}{2}(\sin x)$	
	$\cos^2 x$	M1
	$=\sin x \sec^2 x$	
(ii)	For a decreasing function, $\frac{dy}{dx} < 0$	
	For $0 \le x \le 2\pi$, $\sec^2 x > 0$, $x \ne \frac{\pi}{2}$, $\frac{3\pi}{2}$, $\sin x < 0$ for $\pi < x < 2\pi$	B1
	2 2	B1 - if didn't
	$dy = 2 \frac{3\pi}{3}$	write $x * \frac{3p}{2}$ its
	Hence $\frac{d}{dx} < 0$ for $\pi < x < 2\pi, x \neq \frac{d}{2}$	2
		acceptable.